Create a zero-variance filter
house_sales_df contains ten continuous variables describing house sales in King County, California. Examples of these variables include square footage, number of rooms, and sales price. You will need to reduce the dimensionality to make the dataset easier to work with and reduce the training time when creating models.
Let's get started with creating a zero-variance filter. The tidyverse package has been loaded for you.
Deze oefening maakt deel uit van de cursus
Dimensionality Reduction in R
Oefeninstructies
- Create a zero-variance filter using
summarize()andfilter()and store it inzero_var_filter.
Praktische interactieve oefening
Probeer deze oefening eens door deze voorbeeldcode in te vullen.
# Create zero-variance filter
___ <- ___ %>%
___(across(everything(), ~ ___(___, ___ = ___))) %>%
pivot_longer(everything(), names_to = "feature", values_to = "variance") %>%
___(___ == ___) %>%
pull(feature)
zero_var_filter