Analyzing missingness percentage
Before jumping into treating missing data, it is essential to analyze the various factors surrounding missing data. The elementary step in analyzing the data is to analyze the amount of missingness, that is the number of values missing for a variable. In this exercise, you'll calculate the total number of missing values per column and also find out the percentage of missing values per column.
In this exercise, you will load the 'airquality' dataset by parsing the Date column and then calculate the sum of missing values and the degree of missingness in percent on the nullity DataFrame
Deze oefening maakt deel uit van de cursus
Dealing with Missing Data in Python
Praktische interactieve oefening
Probeer deze oefening eens door deze voorbeeldcode in te vullen.
# Load the air-quality.csv dataset
airquality = pd.read_csv(___, parse_dates=[___], index_col=___)