Visualize backward fill imputation
To understand the quality of imputations, it is important to analyze how the imputations vary with respect to the actual dataset. The quickest way to do so is by visualizing the imputations.
In the previous exercise, you visualized the time-series forward filled imputation of airquality DataFrame. In this exercise, you will visualize the backward filled imputation of airquality DataFrame.
Deze oefening maakt deel uit van de cursus
Dealing with Missing Data in Python
Praktische interactieve oefening
Probeer deze oefening eens door deze voorbeeldcode in te vullen.
# Impute airquality DataFrame with bfill method
bfill_imputed = airquality.___(___='___')