Searching over model order
In this exercise you are faced with a dataset which appears to be an ARMA model. You can see the ACF and PACF in the plot below. In order to choose the best order for this model you are going to have to do a search over lots of potential model orders to find the best set.
<\center>\center>The ARIMA model class and the time series DataFrame df are available in your environment.
Deze oefening maakt deel uit van de cursus
ARIMA Models in Python
Oefeninstructies
- Loop over values of
pfrom 0-2. - Loop over values of
qfrom 0-2. - Train and fit an ARMA(p,q) model.
- Append a tuple of
(p,q, AIC value, BIC value)toorder_aic_bic.
Praktische interactieve oefening
Probeer deze oefening eens door deze voorbeeldcode in te vullen.
# Create empty list to store search results
order_aic_bic=[]
# Loop over p values from 0-2
for p in range(____):
# Loop over q values from 0-2
for q in range(____):
# create and fit ARMA(p,q) model
model = ARIMA(df, order=____)
results = model.fit()
# Append order and results tuple
order_aic_bic.append((____))