IniziaInizia gratis

Expectation function

So far, you have learned how the Expectation-Maximization algorithm is used to estimate the parameters of two Gaussian distributions with both sd equal 1. The aim of this exercise is to create the function expectation, which generalizes the step of estimating the probabilities when we know the means, proportions and the sds.

Questo esercizio fa parte del corso

Mixture Models in R

Visualizza il corso

Istruzioni dell'esercizio

Create the function expectation by completing the sample code. Observe that we are now considering the standard deviations of each cluster as its fourth parameter.

Esercizio pratico interattivo

Prova a risolvere questo esercizio completando il codice di esempio.

expectation <- ___(___, means, proportions, ___){
  # Estimate the probabilities
  exp_data <- data %>% 
    mutate(prob_from_cluster1 = ___[1] * dnorm(x, mean = means[1], sd = ___[1]),
           prob_from_cluster2 = ___[2] * dnorm(x, mean = means[2], sd = ___[2]),
           prob_cluster1 = prob_from_cluster1/(prob_from_cluster1 + prob_from_cluster2),
           prob_cluster2 = prob_from_cluster2/(prob_from_cluster1 + prob_from_cluster2)) %>% 
    select(x, ___, ___)
    
  # Return data with probabilities
  return(exp_data)
}
Modifica ed esegui il codice