Adding parameters to project run
Parameters can be used to configure the behavior of a model by being passed as variables to the model during training. This allows you to train the model several times using different parameters without modifying the training code itself.
In this exercise, you will use the mlflow projects module to run a Project used to train a Logistic Regression model for your Insurance experiment. You will create code using the mlflow projects module that will run your project. You will then add parameters that will be passed as hyperparameters to the model during training.
Questo esercizio fa parte del corso
Introduction to MLflow
Istruzioni dell'esercizio
- Call
mlflow.projects.run()function from themlflow projectsmodule. - Create the parameters dictionary and set
n_jobs_paramto 2 andfit_intercept_paramtoFalse.
Esercizio pratico interattivo
Prova a risolvere questo esercizio completando il codice di esempio.
import mlflow
# Set the run function from the MLflow Projects module
____.____.____(
uri='./',
entry_point='main',
experiment_name='Insurance',
env_manager='local',
# Set parameters for n_jobs and fit_intercept
____={
'____': ____,
'____': ____
}
)