IniziaInizia gratis

Starting a run

MLflow uses the concept of a run as a way to organize model training. Before metrics, parameters or artifacts can be logged to MLflow Tracking, a run must become active. Each run must also belong to an existing experiment.

In the following exercise, you will start a new run so that you can begin logging a model. You will also set the experiment in which you would like the run to be logged. The mlflow module will already be imported for you.

Questo esercizio fa parte del corso

Introduction to MLflow

Visualizza il corso

Istruzioni dell'esercizio

  • Set the experiment so that the active run tracks to "Unicorn Sklearn Experiment" experiment.
  • Start a new run with mlflow module.

Esercizio pratico interattivo

Prova a risolvere questo esercizio completando il codice di esempio.

# Set the experiment
____.____("____")

# Start a run
____.____() 
Modifica ed esegui il codice