IniziaInizia gratis

MLflow experiments

MLflow experiments are used as a way to organize data from training runs in a way that can be easily searched and queried for our analysis later.

In this exercise, you will use the MLflow module to create a new experiment called Unicorn Model for your new ML project. You will add useful information to the experiment by setting tags for the version. Finally, you will set the Unicorn Model experiment as your current experiment so when you begin tracking your data will be tracked within this particular experiment.

Questo esercizio fa parte del corso

Introduction to MLflow

Visualizza il corso

Istruzioni dell'esercizio

  • Import the MLflow module.
  • Create a new experiment called "Unicorn Model".
  • On the Unicorn Model, set the set the tags as "version" and "1.0".
  • Set the experiment "Unicorn Model" as the current experiment for tracking.

Esercizio pratico interattivo

Prova a risolvere questo esercizio completando il codice di esempio.

# Import MLflow
import ____

# Create new experiment
mlflow.____("____ ____")

# Tag new experiment
mlflow.____("____", "____")

# Set the experiment
mlflow.____("____ ____")
Modifica ed esegui il codice