IniziaInizia gratis

Package a machine learning model

In this exercise, you will train a LinearRegression model from scikit-learn to predict profit of a Unicorn Company.

You will use MLflow's built-in scikit-learn Flavor to package the model. You will use the Flavor's auto logging function to automatically log metrics, parameters and the model to MLflow Tracking when the fit estimator is called.

Questo esercizio fa parte del corso

Introduction to MLflow

Visualizza il corso

Istruzioni dell'esercizio

  • Import the sklearn Flavor from the mlflow module.
  • Set the Experiment to "Sklearn Model".
  • Use auto logging from the flavor to package your model.

Esercizio pratico interattivo

Prova a risolvere questo esercizio completando il codice di esempio.

# Import Scikit-learn flavor
import mlflow.____

# Set the experiment to "Sklearn Model"
mlflow.____("____")

# Set Auto logging for Scikit-learn flavor 
____.____.____()

lr = LinearRegression()
lr.fit(X_train, y_train)

# Get a prediction from test data
print(lr.predict(X_test.iloc[[5]]))
Modifica ed esegui il codice