IniziaInizia gratis

Correcting Right Skew Data

In the slides we showed how you might use log transforms to fix positively skewed data (data whose distribution is mostly to the left). To correct negative skew (data mostly to the right) you need to take an extra step called "reflecting" before you can apply the inverse of \(\log\), written as (1/\(\log\)) to make the data look more like normal a normal distribution. Reflecting data uses the following formula to reflect each value: \((x_{\text{max}} +1) – x\).

Questo esercizio fa parte del corso

Feature Engineering with PySpark

Visualizza il corso

Istruzioni dell'esercizio

  • Use the aggregate function skewness() to verify that 'YEARBUILT' has negative skew.
  • Use the withColumn() to create a new column 'Reflect_YearBuilt' and reflect the values of 'YEARBUILT'.
  • Using 'Reflect_YearBuilt' column, create another column 'adj_yearbuilt' by taking 1/log() of the values.

Esercizio pratico interattivo

Prova a risolvere questo esercizio completando il codice di esempio.

from pyspark.sql.functions import log

# Compute the skewness
print(df.____({____: ____}).____())

# Calculate the max year
max_year = df.____({____: ____}).____()[0][0]

# Create a new column of reflected data
df = df.____(____, (max_year + 1) - df[____])

# Create a new column based reflected data
df = df.____(____, 1 / ____(df[____]))
Modifica ed esegui il codice