Classifier block
Your next task is to create a classifier block that will replace the original VGG16 classifier. You decide to use a block with two fully connected layers with a ReLU activation in between.
The vgg_model and input_dim you defined in the last exercise are available in your workspace, and torch and torchvision.models have been imported.
Questo esercizio fa parte del corso
Deep Learning for Images with PyTorch
Istruzioni dell'esercizio
- Create a variable
num_classeswith the number of classes assuming you're dealing with detecting cats and dogs only. - Create a sequential block using
nn.Sequential. - Create a linear layer with
in_featuresset toinput_dim. - Add the output features to the classifier's last layer.
Esercizio pratico interattivo
Prova a risolvere questo esercizio completando il codice di esempio.
# Create a variable with the number of classes
____
# Create a sequential block
classifier = ____(
# Create a linear layer with input features
____(____, 512),
nn.ReLU(),
# Add the output dimension to the classifier
nn.Linear(512, ____),
)