IniziaInizia gratis

Impacts of Black-White Segregation by Sex

seaborn lets us plot two variables conditioned on a third variable. The two variables will be dissimilarity and unemployment, and we will condition the scatterplot on a third variable, sex, by changing the color of the points and regression line based on the sex being reported. But first we have to turn msa_black_emp into a "tidy" DataFrame.

msa_black_emp has been loaded, with columns "pct_male_unemp" and "pct_female_unemp" as calculated in the last exercise.

pandas and seaborn have been loaded using the usual aliases.

Questo esercizio fa parte del corso

Analyzing US Census Data in Python

Visualizza il corso

Esercizio pratico interattivo

Prova a risolvere questo esercizio completando il codice di esempio.

# Restrict DataFrame to columns of interest, rename columns
tidy_black_emp = msa_black_emp[____]
tidy_black_emp.columns = ____
Modifica ed esegui il codice