MulaiMulai sekarang secara gratis

Additional results of PCA

PCA models in R produce additional diagnostic and output components:

  • center: the column means used to center to the data, or FALSE if the data weren't centered
  • scale: the column standard deviations used to scale the data, or FALSE if the data weren't scaled
  • rotation: the directions of the principal component vectors in terms of the original features/variables. This information allows you to define new data in terms of the original principal components
  • x: the value of each observation in the original dataset projected to the principal components

You can access these the same as other model components. For example, use pr.out$rotation to access the rotation component.

Which of the following statements is not correct regarding the pr.out model fit on the pokemon data?

Latihan ini adalah bagian dari kursus

Unsupervised Learning in R

Lihat Kursus

Latihan interaktif praktis

Ubah teori menjadi tindakan dengan salah satu latihan interaktif kami.

Mulai berolahraga