Visualizing decision & margin bounds using `plot()`
In this exercise, you will rebuild the SVM model (as a refresher) and use the built in SVM plot() function to visualize the decision regions and support vectors. The training data is available in the dataframe trainset.
Latihan ini adalah bagian dari kursus
Support Vector Machines in R
Petunjuk latihan
- Load the library needed to build an SVM model.
- Build a linear SVM model using the training data.
- Plot the decision regions and support vectors.
Latihan interaktif praktis
Cobalah latihan ini dengan menyelesaikan kode contoh berikut.
#load required library
library(___)
#build svm model
svm_model<-
svm(y ~ ., data = ___, type = "C-classification",
kernel = "___", scale = FALSE)
#plot decision boundaries and support vectors for the training data
plot(x = svm_model, data = ___)