MulaiMulai sekarang secara gratis

Tuning an RBF kernel SVM

In this exercise you will build a tuned RBF kernel SVM for the given training dataset (available in dataframe trainset) and calculate the accuracy on the test dataset (available in data frame testset). You will then plot the tuned decision boundary against the test dataset.

Latihan ini adalah bagian dari kursus

Support Vector Machines in R

Lihat Kursus

Latihan interaktif praktis

Cobalah latihan ini dengan menyelesaikan kode contoh berikut.

#tune model
tune_out <- ___(x = trainset[, -3], y = trainset[, 3], 
                gamma = 5*10^(-2:2), 
                cost = c(0.01, 0.1, 1, 10, 100), 
                type = "C-classification", kernel = ___)
Edit dan Jalankan Kode