Tuning an RBF kernel SVM
In this exercise you will build a tuned RBF kernel SVM for the given training dataset (available in dataframe trainset) and calculate the accuracy on the test dataset (available in data frame testset). You will then plot the tuned decision boundary against the test dataset.
Latihan ini adalah bagian dari kursus
Support Vector Machines in R
Latihan interaktif praktis
Cobalah latihan ini dengan menyelesaikan kode contoh berikut.
#tune model
tune_out <- ___(x = trainset[, -3], y = trainset[, 3],
gamma = 5*10^(-2:2),
cost = c(0.01, 0.1, 1, 10, 100),
type = "C-classification", kernel = ___)