MulaiMulai sekarang secara gratis

From probabilites to confusion matrix

Conversely, say you want to be really certain that your model correctly identifies all the mines as mines. In this case, you might use a prediction threshold of 0.10, instead of 0.90.

The code pattern for cutting probabilities into predicted classes, then calculating a confusion matrix, was shown in Exercise 7 of this chapter.

Latihan ini adalah bagian dari kursus

Machine Learning with caret in R

Lihat Kursus

Petunjuk latihan

  • Use ifelse() to create a character vector, m_or_r that is the positive class, "M", when p is greater than 0.1, and the negative class, "R", otherwise.
  • Convert m_or_r to be a factor, p_class, with levels the same as those of test[["Class"]].
  • Make a confusion matrix with confusionMatrix(), passing p_class and the "Class" column from the test dataset.

Latihan interaktif praktis

Cobalah latihan ini dengan menyelesaikan kode contoh berikut.

# If p exceeds threshold of 0.1, M else R: m_or_r


# Convert to factor: p_class


# Create confusion matrix
Edit dan Jalankan Kode