MulaiMulai sekarang secara gratis

Exploring the IPEDS Data II

Most analyses require data wrangling. Luckily, there are many functions in the tidyverse that facilitate data frame cleaning. For example, the drop_na() function will remove observations with missing values. By default, drop_na() will check all columns for missing values and will remove all observations with one or more missing values.

miss_ex <- tibble(
             animal = c("dog", "cat", "rat", NA),
             name   = c("Woodruf", "Stryker", NA, "Morris"),
             age    = c(1:4))
miss_ex

miss_ex %>% 
     drop_na() %>% 
     arrange(desc(age))

# A tibble: 2 x 3
  animal    name   age
   <chr>   <chr> <dbl>
1    cat Stryker     2
2    dog Woodruf     1

Latihan ini adalah bagian dari kursus

Interactive Maps with leaflet in R

Lihat Kursus

Latihan interaktif praktis

Cobalah latihan ini dengan menyelesaikan kode contoh berikut.

# Remove colleges with missing sector information
ipeds <- 
    ipeds_missing %>% 
    ___()
Edit dan Jalankan Kode