MulaiMulai sekarang secara gratis

A Cluster Approach

Rather than using layers to improve the usability of our map, we could elect to cluster the colleges by clustering groups of nearby colleges together to reduce the number of points on the map. Zooming in will cause the clusters to break apart and the individual colleges to appear. This can be a useful tactic for mapping a large number of points in a user-friendly manner.

We can cluster all of our colleges by setting the clusterOptions argument of addCircleMarkers() as follows.

ipeds %>% 
  leaflet() %>%
    addTiles() %>% 
    addCircleMarkers(clusterOptions = markerClusterOptions())

The ipeds data, htmltools library, and color palette pal have been loaded for you.

Latihan ini adalah bagian dari kursus

Interactive Maps with leaflet in R

Lihat Kursus

Petunjuk latihan

  • Sanitize any html in our labels.
  • Color code colleges by sector using the pal color palette.
  • Cluster all colleges using clusterOptions.

Latihan interaktif praktis

Cobalah latihan ini dengan menyelesaikan kode contoh berikut.

ipeds %>% 
    leaflet() %>% 
        addTiles() %>% 
        # Sanitize any html in our labels
        addCircleMarkers(radius = 2, label = ___(name),
                         # Color code colleges by sector using the `pal` color palette
                         color = ___(sector_label),
                         # Cluster all colleges using `clusterOptions`
                         ___ = ___()) 
Edit dan Jalankan Kode