Filtering queries
In this exercise, you'll practice querying the 'datacamp-index'
Pinecone index. You'll connect to the index and query it using the vector
provided to retrieve similar vectors. You'll also use metadata filtering to optimize your querying and return the most relevant search results.
Cet exercice fait partie du cours
Vector Databases for Embeddings with Pinecone
Instructions
- Initialize the Pinecone connection with your API key.
- Retrieve the MOST similar vector to the
vector
provided, only searching through vectors where the metadata'year'
equals2024
.
Exercice interactif pratique
Essayez cet exercice en complétant cet exemple de code.
# Initialize the Pinecone client with your API key
pc = Pinecone(api_key="____")
index = pc.Index('datacamp-index')
# Retrieve the MOST similar vector with the year 2024
query_result = ____
print(query_result)