CommencerCommencer gratuitement

Building a retrieval function

A key process in the Retrieval Augmented Generation (RAG) workflow is retrieving data from the database. In this exercise, you'll design a custom function called retrieve() that will perform this crucial process in the final exercise of the course.

Cet exercice fait partie du cours

Vector Databases for Embeddings with Pinecone

Afficher le cours

Instructions

  • Initialize the Pinecone client with your API key (the OpenAI client is available as client).
  • Define the function retrieve that takes four parameters: query, top_k, namespace, and emb_model.
  • Embed the input query using the emb_model argument.
  • Retrieve the top_k similar vectors to query_emb with metadata, specifying the namespace provided to the function as an argument.

Exercice interactif pratique

Essayez cet exercice en complétant cet exemple de code.

# Initialize the Pinecone client
pc = Pinecone(api_key="____")
index = pc.Index('pinecone-datacamp')

# Define a retrieve function that takes four arguments: query, top_k, namespace, and emb_model
def retrieve(query, top_k, namespace, emb_model):
    # Encode the input query using OpenAI
    query_response = ____(
        input=____,
        model=____
    )
    
    query_emb = query_response.data[0].embedding
    
    # Query the index using the query_emb
    docs = index.query(vector=____, top_k=____, namespace=____, include_metadata=True)
    
    retrieved_docs = []
    sources = []
    for doc in docs['matches']:
        retrieved_docs.append(doc['metadata']['text'])
        sources.append((doc['metadata']['title'], doc['metadata']['url']))
    
    return retrieved_docs, sources

documents, sources = retrieve(
  query="How to build next-level Q&A with OpenAI",
  top_k=3,
  namespace='youtube_rag_dataset',
  emb_model="text-embedding-3-small"
)
print(documents)
print(sources)
Modifier et exécuter le code