Tuning an RBF kernel SVM
In this exercise you will build a tuned RBF kernel SVM for the given training dataset (available in dataframe trainset
) and calculate the accuracy on the test dataset (available in data frame testset
). You will then plot the tuned decision boundary against the test dataset.
Cet exercice fait partie du cours
Support Vector Machines in R
Exercice interactif pratique
Essayez cet exercice en complétant cet exemple de code.
#tune model
tune_out <- ___(x = trainset[, -3], y = trainset[, 3],
gamma = 5*10^(-2:2),
cost = c(0.01, 0.1, 1, 10, 100),
type = "C-classification", kernel = ___)