CommencerCommencer gratuitement

Scaling data - standardizing columns

Since we know that the Ash, Alcalinity of ash, and Magnesium columns in the wine dataset are all on different scales, let's standardize them in a way that allows for use in a linear model.

Cet exercice fait partie du cours

Preprocessing for Machine Learning in Python

Afficher le cours

Instructions

  • Import the StandardScaler class.
  • Instantiate a StandardScaler() and store it in the variable, scaler.
  • Create a subset of the wine DataFrame containing the Ash, Alcalinity of ash, and Magnesium columns, assign it to wine_subset.
  • Fit and transform the standard scaler to wine_subset.

Exercice interactif pratique

Essayez cet exercice en complétant cet exemple de code.

# Import StandardScaler
from sklearn.preprocessing import ____

# Create the scaler
scaler = ____

# Subset the DataFrame you want to scale 
____ = wine[[____]]

# Apply the scaler to wine_subset
wine_subset_scaled = scaler.____(____)
Modifier et exécuter le code