CommencerCommencer gratuitement

Extracting datetime components

There are several columns in the volunteer dataset comprised of datetimes. Let's take a look at the start_date_date column and extract just the month to use as a feature for modeling.

Cet exercice fait partie du cours

Preprocessing for Machine Learning in Python

Afficher le cours

Instructions

  • Convert the start_date_date column into a pandas datetime column and store it in a new column called start_date_converted.
  • Retrieve the month component of start_date_converted and store it in a new column called start_date_month.
  • Print the .head() of just the start_date_converted and start_date_month columns.

Exercice interactif pratique

Essayez cet exercice en complétant cet exemple de code.

# First, convert string column to date column
volunteer["start_date_converted"] = pd.____(____)

# Extract just the month from the converted column
volunteer["start_date_month"] = volunteer[____].____

# Take a look at the converted and new month columns
print(volunteer[[____, ____]].____)
Modifier et exécuter le code