Finalizing the model
It is time to implement the results of your tuning work and impress the Human Resources team. You can finalize your model with the optimal penalty identified and see if it meets your expectations. Your results have been loaded, and the user-defined function class_evaluate()
is available in your environment.
Cet exercice fait partie du cours
Feature Engineering in R
Instructions
- Select the optimal penalty for the Lasso.
- Fit a final model using the optimal penalty.
Exercice interactif pratique
Essayez cet exercice en complétant cet exemple de code.
# Select the optimal penalty for the Lasso
best_penalty <- ___(tune_output, metric = 'roc_auc', desc(penalty))
best_penalty
# Fit a final model using the optimal penalty
final_fit <- ___(workflow_lasso_tuned, best_penalty) %>%
fit(data = train)
final_fit %>% tidy()
final_fit %>% augment(test) %>% class_evaluate(truth = Attrition,
estimate = .pred_class,
.pred_Yes)