CommencerCommencer gratuitement

Fitting and assessing the model

Now that you have addressed missing values and created dummy variables, it is time to assess your model's performance!

The attritiondataset, along with the testand train splits, the lr_recipe and your declared logistic_model() are all loaded for you.

Cet exercice fait partie du cours

Feature Engineering in R

Afficher le cours

Instructions

  • Bundle model and recipe in workflow.
  • Fit workflow to the train data.
  • Generate an augmented data frame for performance assessment.

Exercice interactif pratique

Essayez cet exercice en complétant cet exemple de code.

# Bundle model and recipe in workflow
lr_workflow <- ___() %>%
  add_model(lr_model) %>%
  add_recipe(lr_recipe)

# Fit workflow to the train data
lr_fit <- ___(lr_workflow, data = train)

# Generate an augmented data frame for performance assessment
lr_aug <- lr_fit %>% ___(test)

lr_aug %>% roc_curve(truth = Attrition, .pred_No) %>% autoplot()
bind_rows(lr_aug %>% roc_auc(truth = Attrition, .pred_No),          
          lr_aug %>% accuracy(truth = Attrition, .pred_class))
Modifier et exécuter le code