CommencerCommencer gratuitement

Prep and split

You will be working with the full attrition dataset with 1470 instances of 30 features related to the target variable Attrition, including missing values. The mission is to build a full end-to-end model to predict your target. The dataset is loaded for you.

You'll start by preparing and splitting the data.

Cet exercice fait partie du cours

Feature Engineering in R

Afficher le cours

Instructions

  • Begin by transforming all character values to factors.
  • Create train and test splits.

Exercice interactif pratique

Essayez cet exercice en complétant cet exemple de code.

# Transform all character values to factors
attrition <- 
  attrition %>%
  mutate(___(where(___), as_factor))
  
# Create train and test splits
set.seed(123)
split <- initial_split(attrition, strata = Attrition)
test <- ___(split)
train <- ___(___)

glimpse(train)
Modifier et exécuter le code