Percent of variance explained
From the pca_output
, you can retrieve the standard deviation explained by each principal component. Then, use these values to compute the variance explained and the cumulative variance explained, and glue together these values into a tibble
.
The pca_output
object is loaded for you.
Cet exercice fait partie du cours
Feature Engineering in R
Instructions
- Calculate percentage of variance explained leveraging the standard deviation vector.
- Create a tibble with principal components, variance explained and cumulative variance explained.
Exercice interactif pratique
Essayez cet exercice en complétant cet exemple de code.
sdev <- pca_output$steps[[3]]$res$sdev
# Calculate percentage of variance explained
var_explained <- ___
# Create a tibble with principal components, variance explained and cumulative variance explained
PCA = tibble(PC = 1:length(sdev), var_explained = ___,
cumulative = ___)