CommencerCommencer gratuitement

Evaluating model quality

It's now time to begin evaluating model quality.

Here, you will compare the RMSE and MAE of a cross-validated XGBoost model on the Ames housing data. As in previous exercises, all necessary modules have been pre-loaded and the data is available in the DataFrame df.

Cet exercice fait partie du cours

Extreme Gradient Boosting with XGBoost

Afficher le cours

Exercice interactif pratique

Essayez cet exercice en complétant cet exemple de code.

# Create the DMatrix: housing_dmatrix
housing_dmatrix = xgb.DMatrix(data=X, label=y)

# Create the parameter dictionary: params
params = {"objective":"reg:squarederror", "max_depth":4}

# Perform cross-validation: cv_results
cv_results = ____(dtrain=____, params=____, nfold=____, num_boost_round=____, metrics=____, as_pandas=True, seed=123)

# Print cv_results
print(cv_results)

# Extract and print final boosting round metric
print((cv_results["____"]).tail(1))
Modifier et exécuter le code