Tuning max_depth
In this exercise, your job is to tune max_depth
, which is the parameter that dictates the maximum depth that each tree in a boosting round can grow to. Smaller values will lead to shallower trees, and larger values to deeper trees.
Cet exercice fait partie du cours
Extreme Gradient Boosting with XGBoost
Instructions
- Create a list called
max_depths
to store the following"max_depth"
values:2
,5
,10
, and20
. - Iterate over your
max_depths
list using afor
loop. - Systematically vary
"max_depth"
in each iteration of thefor
loop and perform 2-fold cross-validation with early stopping (5
rounds),10
boosting rounds, a metric of"rmse"
, and aseed
of123
. Ensure the output is a DataFrame.
Exercice interactif pratique
Essayez cet exercice en complétant cet exemple de code.
# Create your housing DMatrix
housing_dmatrix = xgb.DMatrix(data=X,label=y)
# Create the parameter dictionary
params = {"objective":"reg:squarederror"}
# Create list of max_depth values
max_depths = ____
best_rmse = []
# Systematically vary the max_depth
for curr_val in ____:
params["____"] = ____
# Perform cross-validation
cv_results = ____
# Append the final round rmse to best_rmse
best_rmse.append(cv_results["test-rmse-mean"].tail().values[-1])
# Print the resultant DataFrame
print(pd.DataFrame(list(zip(max_depths, best_rmse)),columns=["max_depth","best_rmse"]))