CommencerCommencer gratuitement

Stacked predictions for app ratings

Once the stacking estimator is built you can fit it to the training set. Then, it will be ready for step 5: use the stacked ensemble for predictions.

The stacking classifier is available to you as clf_stack.

Let's obtain the final predictions and see if there is any improvement in performance thanks to stacking.

Cet exercice fait partie du cours

Ensemble Methods in Python

Afficher le cours

Instructions

  • Fit the stacking classifier on the training set.
  • Calculate the final predictions from the stacking estimator on the test set.
  • Evaluate the performance on the test set using the accuracy score.

Exercice interactif pratique

Essayez cet exercice en complétant cet exemple de code.

# Fit the stacking classifier to the training set
____

# Obtain the final predictions from the stacking classifier
pred_stack = ____

# Evaluate the new performance on the test set
print('Accuracy: {:0.4f}'.format(____))
Modifier et exécuter le code