Visualizing decision & margin bounds using `plot()`
In this exercise, you will rebuild the SVM model (as a refresher) and use the built in SVM plot() function to visualize the decision regions and support vectors. The training data is available in the dataframe trainset.
Este ejercicio forma parte del curso
Support Vector Machines in R
Instrucciones del ejercicio
- Load the library needed to build an SVM model.
- Build a linear SVM model using the training data.
- Plot the decision regions and support vectors.
Ejercicio interactivo práctico
Prueba este ejercicio y completa el código de muestra.
#load required library
library(___)
#build svm model
svm_model<-
svm(y ~ ., data = ___, type = "C-classification",
kernel = "___", scale = FALSE)
#plot decision boundaries and support vectors for the training data
plot(x = svm_model, data = ___)