ComenzarEmpieza gratis

Tuning an RBF kernel SVM

In this exercise you will build a tuned RBF kernel SVM for the given training dataset (available in dataframe trainset) and calculate the accuracy on the test dataset (available in data frame testset). You will then plot the tuned decision boundary against the test dataset.

Este ejercicio forma parte del curso

Support Vector Machines in R

Ver curso

Ejercicio interactivo práctico

Prueba este ejercicio y completa el código de muestra.

#tune model
tune_out <- ___(x = trainset[, -3], y = trainset[, 3], 
                gamma = 5*10^(-2:2), 
                cost = c(0.01, 0.1, 1, 10, 100), 
                type = "C-classification", kernel = ___)
Editar y ejecutar código