Tuning an RBF kernel SVM
In this exercise you will build a tuned RBF kernel SVM for the given training dataset (available in dataframe trainset
) and calculate the accuracy on the test dataset (available in data frame testset
). You will then plot the tuned decision boundary against the test dataset.
Este ejercicio forma parte del curso
Support Vector Machines in R
Ejercicio interactivo práctico
Prueba este ejercicio y completa el código de muestra.
#tune model
tune_out <- ___(x = trainset[, -3], y = trainset[, 3],
gamma = 5*10^(-2:2),
cost = c(0.01, 0.1, 1, 10, 100),
type = "C-classification", kernel = ___)