ComenzarEmpieza gratis

RBF SVM on a complex dataset

Calculate the average accuracy for a RBF kernel SVM using 100 different training/test partitions of the complex dataset you generated in the first lesson of this chapter. Use default settings for the parameters. The e1071 library has been preloaded and the dataset is available in the dataframe df. Use random 80/20 splits of the data in df when creating training and test datasets for each iteration.

Este ejercicio forma parte del curso

Support Vector Machines in R

Ver curso

Ejercicio interactivo práctico

Prueba este ejercicio y completa el código de muestra.

#create vector to store accuracies and set random number seed
accuracy <- rep(NA, ___)
set.seed(2)
Editar y ejecutar código