Simple use of .apply()
Let's get some handful experience with .apply()!
You are given the full scores dataset containing students' performance as well as their background information.
Your task is to define the prevalence() function and apply it to the groups_to_consider columns of the scores DataFrame. This function should retrieve the most prevalent group/category for a given column (e.g. if the most prevalent category in the lunch column is standard, then prevalence() should return standard).
The reduce() function from the functools module is already imported.
Tip: pd.Series is an Iterable object. Therefore, you can use standard operations on it.
Este ejercicio forma parte del curso
Practicing Coding Interview Questions in Python
Instrucciones del ejercicio
- Create a tuple list with unique items from passed object
seriesand their counts. - Extract a tuple with the highest counts using
reduce(). - Return the item with the highest counts.
- Apply the prevalence function on the
scoresDataFrame using columns specified ingroups_to_consider.
Ejercicio interactivo práctico
Prueba este ejercicio y completa el código de muestra.
def prevalence(series):
vals = list(series)
# Create a tuple list with unique items and their counts
itms = [(____, ____) for x in set(____)]
# Extract a tuple with the highest counts using reduce()
res = reduce(lambda x, y: ____, ____)
# Return the item with the highest counts
return ____[____]
# Apply the prevalence function on the scores DataFrame
result = scores[groups_to_consider].____
print(result)