ComenzarEmpieza gratis

Testing perplexity

You have been given a dataset full of tweets that were sent by tweet bots during the 2016 US election. Your boss has identified two different account types of interest, Left and Right. Your boss has asked you to perform topic modeling on the tweets from Right tweet bots. Furthermore, your boss is hoping to summarize the content of these tweets with topic modeling. Perform topic modeling on 5, 15, and 50 topics to determine a general idea of how many topics are contained in the data.

Este ejercicio forma parte del curso

Introduction to Natural Language Processing in R

Ver curso

Ejercicio interactivo práctico

Prueba este ejercicio y completa el código de muestra.

library(topicmodels)
# Setup train and test data
sample_size <- floor(0.90 * nrow(right_matrix))
set.seed(1111)
train_ind <- sample(nrow(right_matrix), size = sample_size)
train <- right_matrix[train_ind, ]
test <- right_matrix[-train_ind, ]

# Peform topic modeling 
lda_model <- LDA(___, k = ___, method = ___,
                 control = list(seed = 1111))
# Train
___(lda_model, newdata = ___) 
# Test
___(lda_model, newdata = ___) 
Editar y ejecutar código