Extract h2o models and evaluate performance
In this final exercise, you will extract the best model from the AutoML leaderboard.
The h2o
library and test
data has been loaded and the following code has been run:
automl_model <- h2o.automl(x = x,
y = y,
training_frame = seeds_data_hf,
nfolds = 3,
max_runtime_secs = 60,
sort_metric = "mean_per_class_error",
seed = 42)
Este ejercicio forma parte del curso
Hyperparameter Tuning in R
Ejercicio interactivo práctico
Prueba este ejercicio y completa el código de muestra.
# Extract the leaderboard
lb <- ___@___
head(lb)