Create a zero-variance filter
house_sales_df
contains ten continuous variables describing house sales in King County, California. Examples of these variables include square footage, number of rooms, and sales price. You will need to reduce the dimensionality to make the dataset easier to work with and reduce the training time when creating models.
Let's get started with creating a zero-variance filter. The tidyverse
package has been loaded for you.
Este ejercicio forma parte del curso
Dimensionality Reduction in R
Instrucciones del ejercicio
- Create a zero-variance filter using
summarize()
andfilter()
and store it inzero_var_filter
.
Ejercicio interactivo práctico
Prueba este ejercicio y completa el código de muestra.
# Create zero-variance filter
___ <- ___ %>%
___(across(everything(), ~ ___(___, ___ = ___))) %>%
pivot_longer(everything(), names_to = "feature", values_to = "variance") %>%
___(___ == ___) %>%
pull(feature)
zero_var_filter