ComenzarEmpieza gratis

Identify highly correlated features

Using the data in house_sales_df, you will practice identifying features that have high correlation. High correlation among features indicates redundant information and can cause problems in modeling such as multicollinearity in regression models. You will determine which of the highly correlated features to remove. A correlation matrix will help you identify highly correlated features.

The tidyverse and corrr packages have been loaded for you.

Este ejercicio forma parte del curso

Dimensionality Reduction in R

Ver curso

Instrucciones del ejercicio

  • Create a correlation plot with the correlations printed on the plot.

Ejercicio interactivo práctico

Prueba este ejercicio y completa el código de muestra.

# Create a correlation plot of the house sales
house_sales_df %>% 
  ___() %>% 
  ___() %>% 
  ___(print_cor = ___) +
  theme(axis.text.x = element_text(angle = 90, hjust = 1))
Editar y ejecutar código