LoslegenKostenlos loslegen

Shadow price and slack exercise pt2

In this exercise you are working on the production plan for a company over the next 4 months. Your goal is to determine how much should be produced to minimize the production (fixed + variable), and storage costs while meeting the customers demand. The are constraints on the production capacity and demand each month.

Diese Übung ist Teil des Kurses

Supply Chain Analytics in Python

Kurs anzeigen

Anleitung zur Übung

Complete the code, near the bottom of the sample code, to create a Pandas DataFrame that shows the slack of the constraints.

Interaktive Übung

Versuche dich an dieser Übung, indem du diesen Beispielcode vervollständigst.

model = LpProblem("Production Planning", LpMinimize)
time = [1, 2, 3, 4]
s = LpVariable.dicts("stock_in", [0, 1, 2, 3, 4], lowBound=0, cat="Integer")
x = LpVariable.dicts("prod_in", time, lowBound=0, cat="Integer")
y = LpVariable.dicts("plant_on_", time, lowBound=0, cat="Binary")
model += lpSum([d.loc[t,"unit_prod"]*x[t] + d.loc[t,"unit_inv"]*s[t] 
                + d.loc[t,"fixed_setup"]*y[t] for t in time])
s[0] = 100
for t in time:
    model += s[t-1] + x[t] == d.loc[t,"demand"] + s[t]
    model += x[t] <= d.loc[t,"prod_cap"]*y[t]
model.solve()

# Print the Constraint Slack
o = [{'name':name, 'slack':____} 
     for ____, c in ____]
print(____)
Code bearbeiten und ausführen