Visualizing the Mountain Car Environment
Now, you'll take a step further in your exploration of the Mountain Car environment. Visualization is a key aspect of understanding the dynamics of RL environments. You'll write a function render() that displays the current state of the environment. This function will be used later on for any environment you want to visualize.
matplotlib.pyplot and gymnasium have been imported as plt and gym.
Diese Übung ist Teil des Kurses
Reinforcement Learning with Gymnasium in Python
Anleitung zur Übung
- Complete the
render()function to visualize the environment, obtaining the environmentstate_imageand plotting it. - Call the
render()function to display the current state of the environment.
Interaktive Übung
Vervollständige den Beispielcode, um diese Übung erfolgreich abzuschließen.
env = gym.make('MountainCar', render_mode='rgb_array')
initial_state, _ = env.reset()
# Complete the render function
def render():
state_image = ____
____
plt.show()
# Call the render function
____