LoslegenKostenlos loslegen

Accounting for non-stationarity

In this exercise, you will again visualize the variations in model scores, but now for data that changes its statistics over time.

An instance of the Linear regression model object is stored in model, a cross-validation object in cv, and the data in X and y.

Diese Übung ist Teil des Kurses

Machine Learning for Time Series Data in Python

Kurs anzeigen

Interaktive Übung

Vervollständige den Beispielcode, um diese Übung erfolgreich abzuschließen.

# Pre-initialize window sizes
window_sizes = [25, 50, 75, 100]

# Create an empty DataFrame to collect the stores
all_scores = ____(index=times_scores)

# Generate scores for each split to see how the model performs over time
for window in window_sizes:
    # Create cross-validation object using a limited lookback window
    cv = ____(n_splits=100, max_train_size=window)
    
    # Calculate scores across all CV splits and collect them in a DataFrame
    this_scores = ____(____, ____, ____, cv=cv, scoring=my_pearsonr)
    all_scores['Length {}'.format(window)] = this_scores
Code bearbeiten und ausführen