Plot returns
Lastly, we'll plot the performance of our machine-learning-generated portfolio versus just holding the SPY. We can use this as an evaluation to see if our predictions are doing well or not.
Since we already have algo_cash and spy_cash created, all we need to do is provide them to plt.plot() to display. We'll also set the label for the datasets with legend in plt.plot().
Diese Übung ist Teil des Kurses
Machine Learning for Finance in Python
Anleitung zur Übung
- Use
plt.plot()to plot thealgo_cash(with label'algo') andspy_cash(with label'SPY'). - Use
plt.legend()to display the legend.
Interaktive Übung
Vervollständige den Beispielcode, um diese Übung erfolgreich abzuschließen.
# Plot the algo_cash and spy_cash to compare overall returns
plt.plot(____, ____)
plt.plot(spy_cash, label='SPY')
____ # show the legend
plt.show()