Fit a random forest
Data scientists often use random forest models. They perform well out of the box, and have lots of settings to optimize performance. Random forests can be used for classification or regression; we'll use it for regression to predict the future price change of LNG.
We'll create and fit the random forest model similarly to the decision trees using the .fit(features, targets) method. With sklearn's RandomForestRegressor, there's a built-in .score() method we can use to evaluate performance. This takes arguments (features, targets), and returns the R\(^2\) score (the coefficient of determination).
Diese Übung ist Teil des Kurses
Machine Learning for Finance in Python
Anleitung zur Übung
- Create the random forest model with the imported
RandomForestRegressorclass. - Fit (train) the random forest using
train_featuresandtrain_targets. - Print out the R\(^2\) score on the train and test sets.
Interaktive Übung
Vervollständige den Beispielcode, um diese Übung erfolgreich abzuschließen.
from sklearn.ensemble import RandomForestRegressor
# Create the random forest model and fit to the training data
rfr = ____(n_estimators=200)
rfr.fit(____, ____)
# Look at the R^2 scores on train and test
print(rfr.score(train_features, train_targets))
print(____)