LoslegenKostenlos loslegen

Using SGDClassifier

In this final coding exercise, you'll do a hyperparameter search over the regularization strength and the loss (logistic regression vs. linear SVM) using SGDClassifier().

Diese Übung ist Teil des Kurses

Linear Classifiers in Python

Kurs anzeigen

Anleitung zur Übung

  • Instantiate an SGDClassifier instance with random_state=0.
  • Search over the regularization strength and the hinge vs. log_loss losses.

Interaktive Übung

Vervollständige den Beispielcode, um diese Übung erfolgreich abzuschließen.

# We set random_state=0 for reproducibility 
linear_classifier = ____(random_state=0)

# Instantiate the GridSearchCV object and run the search
parameters = {'alpha':[0.00001, 0.0001, 0.001, 0.01, 0.1, 1], 
             'loss':[____]}
searcher = GridSearchCV(linear_classifier, parameters, cv=10)
searcher.fit(X_train, y_train)

# Report the best parameters and the corresponding score
print("Best CV params", searcher.best_params_)
print("Best CV accuracy", searcher.best_score_)
print("Test accuracy of best grid search hypers:", searcher.score(X_test, y_test))
Code bearbeiten und ausführen