LoslegenKostenlos loslegen

Identifying the most positive and negative words

In this exercise we'll try to interpret the coefficients of a logistic regression fit on the movie review sentiment dataset. The model object is already instantiated and fit for you in the variable lr.

In addition, the words corresponding to the different features are loaded into the variable vocab. For example, since vocab[100] is "think", that means feature 100 corresponds to the number of times the word "think" appeared in that movie review.

Diese Übung ist Teil des Kurses

Linear Classifiers in Python

Kurs anzeigen

Anleitung zur Übung

  • Find the words corresponding to the 5 largest coefficients.
  • Find the words corresponding to the 5 smallest coefficients.

Interaktive Übung

Vervollständige den Beispielcode, um diese Übung erfolgreich abzuschließen.

# Get the indices of the sorted cofficients
inds_ascending = np.argsort(lr.coef_.flatten()) 
inds_descending = inds_ascending[::-1]

# Print the most positive words
print("Most positive words: ", end="")
for i in range(5):
    print(____, end=", ")
print("\n")

# Print most negative words
print("Most negative words: ", end="")
for i in range(5):
    print(____, end=", ")
print("\n")
Code bearbeiten und ausführen