Identifying the most positive and negative words
In this exercise we'll try to interpret the coefficients of a logistic regression fit on the movie review sentiment dataset. The model object is already instantiated and fit for you in the variable lr
.
In addition, the words corresponding to the different features are loaded into the variable vocab
. For example, since vocab[100]
is "think", that means feature 100 corresponds to the number of times the word "think" appeared in that movie review.
Diese Übung ist Teil des Kurses
Linear Classifiers in Python
Anleitung zur Übung
- Find the words corresponding to the 5 largest coefficients.
- Find the words corresponding to the 5 smallest coefficients.
Interaktive Übung
Vervollständige den Beispielcode, um diese Übung erfolgreich abzuschließen.
# Get the indices of the sorted cofficients
inds_ascending = np.argsort(lr.coef_.flatten())
inds_descending = inds_ascending[::-1]
# Print the most positive words
print("Most positive words: ", end="")
for i in range(5):
print(____, end=", ")
print("\n")
# Print most negative words
print("Most negative words: ", end="")
for i in range(5):
print(____, end=", ")
print("\n")