Conditional dropdown options
A senior purchasing officer in the e-commerce company has posed an interesting problem. Their existing dashboard, showing sales by month for minor categories of items, has a two-level dropdown (major category and minor category) with way too many options in it. It is especially annoying, you are told, that some options appear in the second dropdown that can not be selected.
You assure the stakeholder you can assist - it is an excellent opportunity for you to use chained callbacks to produce a conditional dropdown.
Diese Übung ist Teil des Kurses
Building Dashboards with Dash and Plotly
Anleitung zur Übung
- Create a callback below line
31
to update theminor_cat_dd
dropdownoptions
based on themajor_cat_dd
dropdown value. - Reformat the
relevant_minor_options
variable (below line39
) into a list of dictionaries with identicallabel
andvalue
keys. - Create another callback below line
43
that updates thesales_line
graphfigure
based on theminor_cat_dd
dropdown value.
Interaktive Übung
Versuche dich an dieser Übung, indem du diesen Beispielcode vervollständigst.
from dash import Dash, dcc, html, Input, Output, callback
import plotly.express as px
import pandas as pd
ecom_sales = pd.read_csv('/usr/local/share/datasets/ecom_sales.csv')
major_categories = list(ecom_sales['Major Category'].unique())
minor_categories = list(ecom_sales['Minor Category'].unique())
logo_link = 'https://assets.datacamp.com/production/repositories/5893/datasets/fdbe0accd2581a0c505dab4b29ebb66cf72a1803/e-comlogo.png'
ecom_country = ecom_sales.groupby('Country')['OrderValue'].agg(['sum', 'count']).reset_index().rename(columns={'count':'Sales Volume', 'sum':'Total Sales ($)'})
app = Dash()
app.layout = [
html.Img(src=logo_link, style={'margin':'30px 0px 0px 0px'}),
html.H1('Sales breakdowns'),
html.Div([
html.H2('Controls'),
html.Br(),
html.H3('Major Category Select'),
dcc.Dropdown(
id='major_cat_dd',
options=[{'label':category, 'value':category} for category in major_categories],
style={'width':'200px', 'margin':'0 auto'}),
html.Br(),
html.H3('Minor Category Select'),
dcc.Dropdown(id='minor_cat_dd', style={'width':'200px', 'margin':'0 auto'})],
style={'width':'350px', 'height':'350px', 'display':'inline-block',
'vertical-align':'top', 'border':'1px solid black', 'padding':'20px'}),
dcc.Graph(id='sales_line',style={'width':'700px', 'height':'650px','display':'inline-block'})
]
# Create a callback from the Major Category dropdown to the Minor Category Dropdown
@callback(
Output('____', '____'),
Input('major_cat_dd', 'value'))
def update_minor_dd(major_cat_dd):
major_minor = ecom_sales[['Major Category', 'Minor Category']].drop_duplicates()
relevant_minor_options = major_minor[major_minor['Major Category'] == major_cat_dd]['Minor Category'].values.tolist()
# Set up the Major Category options with the same label and value
formatted_relevant_minor_options = [{'label':____, 'value':____} for ____ in ____]
return formatted_relevant_minor_options
# Create a callback for the Minor Category dropdown to update the line plot
@callback(
Output('____', '____'),
Input('minor_cat_dd', 'value'))
def update_line(minor_cat):
minor_cat_title = 'All'
ecom_line = ecom_sales.copy()
if minor_cat:
minor_cat_title = minor_cat
ecom_line = ecom_line[ecom_line['Minor Category'] == minor_cat]
ecom_line = ecom_line.groupby('Year-Month')['OrderValue'].agg('sum').reset_index(name='Total Sales ($)')
line_graph = px.line(ecom_line, x='Year-Month', y='Total Sales ($)', title=f'Total Sales by Month for Minor Category: {minor_cat_title}')
return line_graph
if __name__ == '__main__':
app.run(debug=True)