Generate key stats on hover
After a recent demonstration of your work with a manager in the e-commerce company, you received a request to create a dashboard for this stakeholder. Having too many visualizations and too much text is absolutely not allowed.
Instead, they want the dashboard to be highly interactive. They have requested a scatter plot that, when hovered over, will provide some additional key stats in a text box to the right. This should change when hovering over a new point on the scatter plot.
Diese Übung ist Teil des Kurses
Building Dashboards with Dash and Plotly
Anleitung zur Übung
- Add the
'Country'
column to the scatter plot'scustom_data
parameter below line8
so it will appear in thehoverData
property. - Create a callback below line
28
that connects thescatter_fig
graph to thetext_output
element and will be triggered by hovering over the scatter plot.
Interaktive Übung
Versuche dich an dieser Übung, indem du diesen Beispielcode vervollständigst.
from dash import Dash, dcc, html, Input, Output, callback
import plotly.express as px
import pandas as pd
ecom_sales = pd.read_csv('/usr/local/share/datasets/ecom_sales.csv')
logo_link = 'https://assets.datacamp.com/production/repositories/5893/datasets/fdbe0accd2581a0c505dab4b29ebb66cf72a1803/e-comlogo.png'
ecom_country = ecom_sales.groupby('Country')['OrderValue'].agg(['sum', 'count']).reset_index().rename(columns={'count':'Sales Volume', 'sum':'Total Sales ($)'})
# Add the country data to the scatter plot
ecom_scatter = px.scatter(ecom_country, x='Total Sales ($)', y='Sales Volume', color='Country', width=350, height=400, ____=['____'])
ecom_scatter.update_layout({'legend':dict(orientation='h', y=-0.5,x=1, yanchor='bottom', xanchor='right'), 'margin':dict(l=20, r=20, t=25, b=0)})
app = Dash()
app.layout = [
html.Img(src=logo_link, style={'margin':'30px 0px 0px 0px' }),
html.H1('Sales breakdowns'),
html.Div([
html.H2('Sales by Country'),
dcc.Graph(id='scatter_fig', figure=ecom_scatter)],
style={'width':'350px', 'height':'500px', 'display':'inline-block',
'vertical-align':'top', 'border':'1px solid black', 'padding':'20px'}),
html.Div([
html.H2('Key Stats'),
html.P(id='text_output', style={'width':'500px', 'text-align':'center'})],
style={'width':'700px', 'height':'650px','display':'inline-block'})
]
# Trigger callback on hover
@callback(
Output('text_output', 'children'),
____('scatter_fig', '____'))
def get_key_stats(hoverData):
if not hoverData:
return 'Hover over a country to see key stats'
country = hoverData['points'][0]['customdata'][0]
country_df = ecom_sales[ecom_sales['Country'] == country]
top_major_cat = country_df.groupby('Major Category').agg('size').reset_index(name='Sales Volume').sort_values(by='Sales Volume', ascending=False).reset_index(drop=True).loc[0,'Major Category']
top_sales_month = country_df.groupby('Year-Month')['OrderValue'].agg('sum').reset_index(name='Total Sales ($)').sort_values(by='Total Sales ($)', ascending=False).reset_index(drop=True).loc[0,'Year-Month']
stats_list = [
f'Key stats for : {country}', html.Br(),
f'The most popular Major Category by sales volume was: {top_major_cat}', html.Br(),
f'The highest sales value month was: {top_sales_month}'
]
return stats_list
if __name__ == '__main__':
app.run(debug=True)