Optimizing model training with Lightning
By implementing automated techniques like ModelCheckpoint and EarlyStopping, you'll ensure your model selects the best-performing parameters while avoiding unnecessary computations.
The dataset, a subset of the Osmanya MNIST dataset, provides a real-world use case where scalable AI training techniques can significantly improve efficiency and accuracy.
OsmanyaDataModule and ImageClassifier have been predefined for you.
Bu egzersiz
Scalable AI Models with PyTorch Lightning
kursunun bir parçasıdırEgzersiz talimatları
- Import callbacks that you'll use for model checkpointing and early stopping.
- Train the model with the
ModelCheckpointandEarlyStoppingcallbacks.
Uygulamalı interaktif egzersiz
Bu örnek kodu tamamlayarak bu egzersizi bitirin.
# Import relevant checkpoints
from lightning.pytorch.callbacks import ____, ____
class EvaluatedImageClassifier(ImageClassifier):
def validation_step(self, batch, batch_idx):
x, y = batch
y_hat = self(x)
acc = (y_hat.argmax(dim=1) == y).float().mean()
self.log("val_acc", acc)
model = EvaluatedImageClassifier()
data_module = OsmanyaDataModule()
# Train the model with ModelCheckpoint and EarlyStopping checkpoints
trainer = Trainer(____=[____(monitor="val_acc", save_top_k=1), ____(monitor="val_acc", patience=3)])
trainer.fit(model, datamodule=data_module)