BaşlayınÜcretsiz Başlayın

Make the validator

The submodule pyspark.ml.tuning also has a class called CrossValidator for performing cross validation. This Estimator takes the modeler you want to fit, the grid of hyperparameters you created, and the evaluator you want to use to compare your models.

The submodule pyspark.ml.tune has already been imported as tune. You'll create the CrossValidator by passing it the logistic regression Estimator lr, the parameter grid, and the evaluator you created in the previous exercises.

Bu egzersiz

Foundations of PySpark

kursunun bir parçasıdır
Kursu Görüntüle

Egzersiz talimatları

  • Create a CrossValidator by calling tune.CrossValidator() with the arguments:
    • estimator=lr
    • estimatorParamMaps=grid
    • evaluator=evaluator
  • Name this object cv.

Uygulamalı interaktif egzersiz

Bu örnek kodu tamamlayarak bu egzersizi bitirin.

# Create the CrossValidator
cv = tune.____(estimator=____,
               estimatorParamMaps=____,
               evaluator=____
               )
Kodu Düzenle ve Çalıştır