ComeçarComece de graça

Perform hyperparameter tuning with mlr

Now, you can combine the prepared functions and objects from the previous exercise to actually perform hyperparameter tuning with random search. The knowledge_train_data dataset has already been loaded for you, as have the packages mlr, tidyverse and tictoc. And the following code has also been run already:

# Define task
task <- makeClassifTask(data = knowledge_train_data, 
                        target = "UNS")

# Define learner
lrn <- makeLearner("classif.nnet", predict.type = "prob", fix.factors.prediction = TRUE)

# Define set of parameters
param_set <- makeParamSet(
  makeDiscreteParam("size", values = c(2,3,5)),
  makeNumericParam("decay", lower = 0.0001, upper = 0.1)
)

Este exercício faz parte do curso

Hyperparameter Tuning in R

Ver curso

Exercício interativo prático

Experimente este exercício completando este código de exemplo.

# Define a random search tuning method.
ctrl_random <- makeTuneControlRandom(___ = ___)
Editar e executar o código